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In this paper, we report the first study aimed at correlating pharmacological properties with
molecular parameters derived from the physicochemical property space of bioactive molecules.
A dataset of 36 ligands of the R1a-, R1b-, and R1d-adrenoceptors as published by Bremner et al.
(Bioorg. Med. Chem. 2000, 8, 201-214) was used. One thousand conformers were generated
for each ligand by Monte Carlo conformational analysis, and four 3D-dependent physicochemical
properties were computed for each conformer of each ligand, namely virtual lipophilicity (log
P), dipole moment, polar surface area (PSA), and solvent-accessible surface area (SAS). Thus,
a space of four physicochemical properties was obtained for each ligand. These spaces were
assessed by two descriptors, namely their range and their sensitivity (i.e., the variation
amplitude of a given physicochemical property for a given variation in molecular geometric
properties). Little or no correlation was found to exist between the physicochemical properties
and their range or sensitivity, indicating that the latter descriptors do not encode the same
molecular information as the former properties. As expected, neither the range nor the
sensitivity of any of the four physicochemical properties correlated with receptor affinities. In
contrast, range and sensitivity showed promising correlations with ∆pKa-b (i.e., the R1a/R1b
selectivity) for the complete dataset. The correlations were lower for ∆pKa-d (i.e., the R1a/R1d
selectivity), whereas there was no correlation at all with ∆pKb-d. These results are consistent
with the results of Bremner et al., which indicate that the R1a-AR ligands bind in an extended
geometry, whereas the R1b-AR and R1d-AR ligands assume more folded conformations. Since
the property space descriptors presented here take structural variability into account, their
correlation with ∆pKa-b and ∆pKa-d indicates that these selectivities are indeed driven by
differences in conformational behavior and hence in property spaces.

1. Introduction
The growing computational power available to re-

searchers is proving an invaluable tool to investigate
the dynamic behavior of molecular systems,1 showing
that a molecule cannot be considered as a static object
but as an animated subject whose conformational
changes may significantly affect the profile of any of its
computable property.2,3

Conformational hypersurfaces are a well-known meta-
phor to express the conformational behavior of flexible
molecules, while the ensemble of all conformers of a
given compound is often taken as defining a confor-
mational space.4,5 In a similar manner, many molecular
properties can be shown to vary with the 3D-geometry
of the molecule. Some of these properties will show very
limited variation with changes in 3D-geometry (e.g.
molecular volume), whereas others can vary quite
broadly as conformation fluctuates. Interestingly, many
physicochemical properties that express recognition
forces and are thus of great pharmacological and
biological relevance are strongly dependent on 3D-
geometry. Such properties and recognition forces include
the dipole moment (which encodes the distribution of
electrostatic forces), virtual log P (i.e., the computed

lipophilicity of a single conformer, which encodes hy-
drophobicity, H-bonding capacity, and polarizability),
and the polar surface area (PSA, which encodes polarity
and H-bonding capacity).6

For each of the above properties, a conformer-specific
value can be computed for each 3D-geometry in the
conformational space (i.e., for each possible and realistic
conformer), thus defining a range of allowed values for
each computable property. This range represents the
corresponding property space, itself interdependent with
other molecular properties and constrained by the
environment.

Until now, the concept of property space has been
understood in an essentially different manner, being
applied to a large series of compounds, with a single
value being used to characterize each considered prop-
erty of each compound. Applications of this approach
include the evaluation of chemical libraries obtained by
combinatorial chemistry or the estimation of the optimal
value a given molecular property should exhibit for
biological relevance (e.g., indices of drug-likeness).7-12

In contrast to the above, the concept of property space
is just beginning to be used to gain a comprehensive
understanding of the dynamic behavior of a single
compound. In this dynamic vision, a molecular property
can be described either (a) by an average value or (b)
by descriptors defining its property space.
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The average value of a property, and especially a
weighted average, contains more information than a
conformer-specific value (even if of the lowest energy
conformer or of the hypothetical bioactive conformer).
However, this average value does not yield information
on the property space itself. To this end, one should use
descriptors specifying the property range and distribu-
tion in relation to conformational changes and other
property profiles.

A property space can be defined using two classes of
descriptors. The first class includes descriptors quan-
tifying the variability (spread) of values, e.g., statistical
functions such as variance, standard deviation, range,
and average difference. The range is probably the most
intuitive descriptor in this context. The second class of
descriptors relates the dynamic behavior of a given
property with other geometric or physicochemical prop-
erties. Such correlations can reveal if and how two
molecular properties change in a coherent manner.

In the present study, attention is focused on the
meaning and applications of relationships between
physicochemical properties on one hand and geometric
descriptors on the other hand. These relationships
describe the ability of a physicochemical property to
fluctuate when the 3D-geometry fluctuates. These re-
lationships also lead us to the concept of molecular
sensitivity, since there will be sensitive molecules, whose
property values are markedly influenced by small
geometric changes, and insensitive molecules, whose
properties change little even during major geometric
fluctuations. It is our postulate that molecular sensitiv-
ity can affect biological properties, as the latter are
dynamic properties in themselves, whose emergence will
depend on the ability of a molecule to fit into and
interact with an active site.

The objective of this study is to verify whether range
and sensitivity can be successfully used as descriptors
of the space of relevant physicochemical properties and
correlated with bioactivity. To this end, we have chosen
a heterogeneous set of ligands of R1-adrenoceptors (R1-
ARs) characterized by their large differences in binding
affinities and receptor subtype selectivities. 13 Such
compounds are also of interest for other reasons, namely
their major role in the treatment of lower urinary tract
symptoms,14 the many data accumulated on their
pharmacological profile,15 and a number of published
QSAR and molecular modeling studies (pharmacophore
mapping) offering predictions of ligand affinity and
selectivity.13,16-21 Furthermore, several studies have
reported that R1-AR affinities can be successfully cor-
related with electronic and hydrophobic descriptors.
Thus, the R1-AR affinities of a homogeneous set of 32
arylpiperazine derivatives was shown to correlate with
the π (lipophilic) and F (electronic) values of their
substituents in the aryl moiety, underlining the key role
of hydrophobic interactions and π-π stacking in com-
plex stabilization.22 Another study has correlated the
selectivity of R1-AR ligands using quantum chemical
indices and shape parameters, suggesting a crucial role
for electrostatic interactions and shape fitting in selec-
tive binding.23

2. The Concept of Molecular Sensitivity
As described in the Introduction, the dynamic nature

of a molecular property can be seen as its ability to span

a possible range, simultaneously influencing the behav-
ior of related properties. This implies that a property
can be fully understood only by monitoring its variations
as a function of variations in other properties. From a
mathematical point of view, such an analysis may be
carried out by considering the regression coefficients
obtained by correlating pairs of properties. A good
coefficient would suggest that the two properties change
coherently, while a poor coefficient would reveal a lack
of interdependence. However, using regression coef-
ficients as independent variables may lead to math-
ematical dead-ends. We thus looked for a descriptor of
property space that would be both informative and
simple to use. The descriptor we propose and evaluate
here is the sensitivity, namely the amplitude of variation
of a given physicochemical property for a given variation
in molecular geometry.

If we consider a physicochemical property X for which
conformer-specific values can be computed (e.g., dipole
moment, polar surface area, virtual log P), its pairwise
sensitivity value (PairwiseSensitivityX,Gij) for two given
conformers (i, j) and a given geometric descriptor G (e.g.,
an intramolecular distance, a torsion angle) can be
defined as the ratio between the absolute value of the
difference of X and the corresponding absolute value of
the difference in G (eq 1):

The global sensitivity (SensitivityX,G, eq 2) will be the
average of the pairwise sensitivities computed for all
possible pairs of N conformers (i.e., for N(N - 1) pairs):

For any given physicochemical property of a molecule,
one can calculate several sensitivity values according
to the geometric descriptors being used. For each
compound, such an analysis can reveal the geometrical
descriptors that play a key role in determining the
dynamic profile of a given physicochemical property. But
when investigating a set of heterogeneous compounds,
it becomes impossible to take specific geometric descrip-
tors into account. A geometric descriptor applicable to
all molecules must therefore be selected. In the present
study, we used the RMSD value (root-mean-square
deviation) of atomic coordinates, a well-known and
universally applicable parameter that aptly describes
geometric differences between pairs of conformers as a
function of their atomic positions. Equation 2 thus
becomes

where RMSDij is the root-mean-square deviation of
atomic coordinates for the conformers i and j. Equation
3 allows one to define a single sensitivity value for a
given physicochemical property X, and the global sen-
sitivity for X can be computed by averaging molecular
sensitivity values for all possible pairs of conformers.

PairwiseSensitivityX,Gij
)

|Xi - Xj|
|Gi - Gj|

(1)

SensitivityX,G )
∑ PairwiseSensitivityX,Gij

N(N - 1)
(2)

SensitivityXij
)

Xi - Xj

RMSDij
(3)
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Of the three equations above, eq 3 is the only one used
in this study, i.e., a sensitivity based on the RMSD
descriptor.

3. Results

3.1. Correlations between Physicochemical Prop-
erties and between Property Space Descriptors.
Table 1 reports the biological data of the compounds
under consideration, namely their affinities for the R1a-,
R1b-, and R1d-adrenoceptors (expressed as pK1a, pK1b, and
pK1d, respectively), and selectivity ratios (expressed as
∆pKa-b, ∆pKa-d, and ∆pKb-d). Tables S1 and S2 (see
Supporting Information) report the property averages
and the descriptors of property space (range and sen-
sitivity) of the four monitored properties (virtual log P,
dipole moment, PSA and SAS). Table S1 also includes
molecular flexibility indices, namely RMSD averages
and the number of conformational clusters produced
during the conformational analyses.

The first step in correlating descriptors was a search
for significant correlations (a) between average physi-
cochemical properties in Table S1, (b) between descrip-
tors of property space in Table S2 (as reported in Table
2A), and (c) between average physicochemical properties
and property space descriptors (Table 2B). The first two
types of correlations can reveal whether the properties
monitored are independent or may contain comparable

information. The correlations of the third type are useful
to decide whether the property space descriptors are
innovative or are closely related to known descriptors.

The average property values (Table S1) do not show
significant correlations, with r2 values ranging from 0.01
to 0.37 for the pair SAS-PSA (data not shown). Table
2A, which presents the correlations among property
space descriptors, can be divided into three meaningful
quadrants: sensitivity-sensitivity (upper left), range-
range (lower right), and range-sensitivity (lower left).
The correlations among property ranges (lower right
quadrant) reveal the highest r2 values. Specifically, the
dipole moment does not yield any significant correlation,
while log P descriptors are related to PSA descriptors
in agreement with the fact that log P and PSA both
encode polarity and H-bonding capacity.

The lower left quadrant shows the relations among
sensitivity values and property ranges. It is interesting
to note that the range and sensitivity of a given
physicochemical property (bold diagonal values) are not
correlated. In other words, these two parameters de-
scribe different features of a property space. The cor-
relations among sensitivity values in the upper left
quadrant confirm a noteworthy correlation between
descriptors of the log P and PSA spaces. It suggests that
parameters of different property spaces cannot be used
in the same relationships, while range and sensitivity
of a single property space can be simultaneously used
in a two-variable correlation as they encode unrelated
information.

Table 2B reports correlations between average phys-
icochemical properties and property space descriptors.
None of the sensitivity values is related to a property
average, whereas the property ranges show some mod-
est correlations (r2 < 0.5), for example between average
log P and range_logP. This lack of meaningful correla-
tions implies that sensitivity and range contain infor-
mation not encoded in the physicochemical properties
themselves, suggesting that they might contain infor-
mation on the dynamic behavior of these physicochem-
ical properties.

3.2. Correlations between Affinities and Prop-
erty Spaces. A search for correlations between affinity
data (pKi) and descriptors of property spaces (range and
sensitivity) failed to uncover any significant correlation
(all r value < 0.5). This result is expected and under-
standable, since affinity depends on the ligand’s ability
to assume well-defined property values, a type of
information not encoded in range and sensitivity.

3.3. Correlations between Selectivities and Prop-
erty Spaces. Table 3 shows that significant correlations
(expressed as r values) exist between some receptor
selectivities and some property space descriptors. In-
deed, ∆pKa-b and ∆pKa-d yield significant correlations
(r > 0.7) with log P, PSA, and SAS ranges, whereas
∆pKb-d yields no correlation whatsoever (r < 0.1).

A clear trend is also apparent among the physico-
chemical properties, since the lipophilicity range yields
the best correlations for both ∆pKa-b and ∆pKa-d, while
the dipole space yields the lowest. In other words, the
capacity of the property spaces to correlate with ∆pKa-b
and ∆pKa-d shows the following ranking: virtual log
P > SAS > PSA > dipole moment. The correlations

Table 1. Biological Data for the Compounds under
Consideration, Namely Affinities for R1A-, R1b-, and
R1d-Adrenoceptors (expressed as pK1A, pK1b, and pK1d,
Respectively) and Selectivities (expressed as ∆pKa-b, ∆pKa-d,
and ∆pKb-d)

no. compd pK1a pK1b pK1d ∆pKa-b ∆pKa-d ∆pKb-d

1 prazosin 9.70 9.60 9.49 0.10 0.20 0.11
2 cyclazosin 7.92 9.89 8.49 -1.97 -0.57 1.39
3 abanoquil 10.40 10.10 10.40 0.30 0.00 -0.30
4 REC-15/2615 8.72 9.52 8.59 -0.80 0.14 0.94
5 alfuzosin 8.00 8.00 8.50 0.00 -0.50 -0.50
6 doxazosin 8.50 9.00 8.40 -0.50 0.10 0.60
7 terazosin 8.20 8.70 8.60 -0.50 -0.40 0.10
8 bunazosin 9.30 9.00 9.00 0.30 0.30 0.00
9 niguldipine 9.82 7.26 7.00 2.56 2.82 0.26

10 SNAP-5089 9.64 7.89 7.18 1.75 2.46 0.71
11 SNAP-5399 9.19 6.49 6.40 2.70 2.79 0.09
12 SNAP-5150 8.72 6.48 6.40 2.24 2.32 0.08
13 WB-4101 9.80 8.60 9.60 1.19 0.19 -1.00
14 phentolamine 8.80 8.10 8.10 0.69 0.69 0.00
15 5-Me-uropidil 9.20 7.40 8.00 1.80 1.20 -0.60
16 KMD-3213 10.40 7.70 8.70 2.70 1.70 -1.00
17 AH-11110A 5.60 7.12 5.56 -1.52 0.04 1.56
18 BMY-7378 6.60 6.20 8.20 0.40 -1.60 -2.00
19 SKF-104856 7.36 7.20 8.28 0.16 -0.93 -1.08
20 discretamine 6.21 6.44 7.60 -0.23 -1.39 -1.16
21 corynanthine 6.85 6.29 6.60 0.56 0.25 -0.31
22 benzoxathian 9.70 8.40 9.40 1.30 0.30 -1.00
23 spiperone 8.10 9.30 7.89 -1.20 0.22 1.41
24 (+)-YM-617 8.37 7.02 7.66 1.35 0.71 -0.64
25 SNAP-8719 6.53 6.72 8.80 -0.19 -2.26 -2.08
26 indoramin 8.40 7.40 6.80 1.00 1.60 0.60
27 RS-17053 9.22 7.80 7.80 1.43 1.43 0.00
28 A-131701 9.66 8.16 9.01 1.50 0.64 -0.86
29 NAN-190 8.70 7.82 9.10 0.88 -0.40 -1.27
30 WAY-100635 7.24 6.73 7.20 0.51 0.04 -0.47
31 RS-100,975 9.00 7.10 7.00 1.90 2.00 0.10
32 REC-15/2739 9.00 7.49 8.60 1.51 0.40 -1.11
33 SNAP-1069 7.80 6.70 6.10 1.10 1.69 0.60
34 SL-89.0591 8.60 7.89 8.60 0.72 0.00 -0.72
35 JHT-601 9.40 8.92 8.92 0.48 0.48 0.00
36 GG-818 9.70 7.80 7.60 1.90 2.10 0.19
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obtained with the range and sensitivity show the same
rank order, with ranges giving better regression coef-
ficients.

Interestingly, all significant correlation coefficients
are positive, implying that R1-ARs selectivities are
mainly proportional with variations in physicochemical
properties, as expressed mainly by range.

The above observations may imply that the ability to
selectively interact with the R1a-AR is encoded in
property space descriptors and especially in the lipo-
philicity space, whereas selective interaction with the
R1b-AR is only partially encoded in property space
descriptors and R1d-AR selectivity not at all.

To expand and clarify this interpretation, we take an
axis symbolizing ligand selectivity and divide it into two
regions (Figure 1), namely strong selectivity (with |∆pK|
> 1) and modest selectivity (with 0 < |∆pK| < 1). Both
strongly and modestly selective R1a-AR ligands correlate
with their property space descriptors (mainly the range),
whereas only modestly selective R1b-AR ligands do so,
and no R1d-AR selective ligand does. In other words,
Table 3 suggests that property space descriptors are not
able to predict a strong selectivity for the R1b-AR, nor
any R1d-AR selectivity. The question is left unanswered
whether this lack of correlation for the R1b-AR and
R1d-AR lies in the physicochemical properties or in the
descriptors of property space. Future investigations
using a broader set of 3D-dependent properties could
solve this problem.

To verify the above hypothesis, we recalculated
regressions coefficients between ∆pKa-b selectivity and
property space parameters, removing the strongly selec-
tive R1b-AR ligands (compounds 2, 4, 17, and 23). This
indeed produced a slight increase (about 0.05-0.10) in
all correlation coefficients between property spaces and
∆pKa-b. The best correlation, namely between range_
logP and ∆pKa-b, is shown in eq 5 and Figure 2:

Clearly, this equation cannot take into account
R1b-selective ligands (i.e. with ∆pKa-b < 0). Indeed, a

Table 2. Search for Correlations (r2 Values) between Decriptors

A. Between Descriptors of Property Space

sensitivity range

descriptors of
property space log P dipole moment PSA SAS log P dipole moment PSA

sensitivity dipole moment 0.05
PSA 0.36 0.02
SAS 0.01 0.01 0.05

range log P 0.16 0.06 0.07 0.17
dipole moment 0.08 0.08 0.11 0.12 0.36
PSA 0.13 0.12 0.19 0.05 0.66 0.36
SAS 0.06 0.10 0.11 0.13 0.57 0.21 0.63

B. Between Average Physicochemical Properties and Property Space Descriptors

average values of physicochemical properties

descriptors of
property space log P dipole moment PSA SAS

sensitivity log P 0.01 0.11 0.02 0.01
dipole moment 0.01 0.02 0.02 0.01
PSA 0.01 0.12 0.02 0.16
SAS 0.01 0.02 0.03 0.02

range log P 0.49 0.28 0.13 0.07
dipole moment 0.27 0.04 0.17 0.12
PSA 0.46 0.17 0.10 0.22
SAS 0.47 0.26 0.12 0.09

Table 3. Correlations (expressed as r values) between
R1-Adrenoceptor Selectivities (∆pKs) and Property Space
Descriptors

property descriptor ∆pKa-b ∆pKa-d ∆pKb-d

log P range 0.81 0.68 0.00
sensitivity 0.42 0.29 0.02

dipole moment range 0.52 0.54 0.01
sensitivity 0.13 0.04 0.01

PSA range 0.66 0.67 0.01
sensitivity 0.12 0.15 0.01

SAS range 0.71 0.66 0.00
sensitivity 0.21 0.09 0.00

Figure 1. The three selectivity ratios considered (∆pKa-b,
∆pKa-d, and ∆pKb-d) and their domain af predictability. The
figure shows three axes symbolizing ligand selectivities,
divided into strong selectivity (|∆pK| > 1) and modest selectiv-
ity (0 < |∆pK| < 1). Both strongly and modestly selective
R1a-AR ligands correlate with their property space descriptors,
whereas only modestly selective R1b-AR ligands do so, and
R1d-AR selective ligands do not.

∆pKa-b ) 1.49((0.12){range_logP} - 0.12((0.13)
(5)

n ) 32; r2 ) 0.79; q2 ) 0.78; s ) 0.41
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hypothetical molecule with an impossibly low range_
logP of 0 would be predicted to have a ∆pKa-b equal to
-0.12. Nevertheless, the goodness of fit of this equation
is remarkable considering the heterogeneous nature of
the ligands and its high q2 value (i.e., good predictive
power) obtained with a single independent variable.

In a similar manner, we recalculated regressions
coefficients between ∆pKa-d selectivity and property
space parameters, removing all R1d-AR selective ligands
(compounds 2, 5, 7, 18-20, 25, and 29). Remarkably,
the R1a-selective ligands taken alone gave better cor-
relations between property spaces and ∆pKa-d than the
full set, even if the new relationships remain of modest
significance (data not shown).

Given the absence of correlation between the sensitiv-
ity and range descriptors (Table 2A), we also examined
whether a two-variable equation would improve on eq
5. As shown by eq 6, the inclusion of two independent
variables in the same equations improves their predic-
tive capacity:

Compared to eq 5, eq 6 shows a slight statistical
improvement. Also, it has a better predictability for
R1b-selective ligands, since a hypothetical molecule with
very low range_logP and sensitivity_logP values would
be predicted to have a ∆pKa-b equal to -0.76. This
seems to confirm that the property space parameters
considered here are devoid of interest for highly selective
R1b-ligands (i.e., ligands with ∆pKa-b < -1). Combining
the range and sensitivity of PSA (or of SAS) also yielded
improved correlations compared to range alone (Table
3), but these remained below the significance of eqs 5
and 6. Interestingly, the independent variables have
positive coefficients in all these equations. This it taken
to mean that the ∆pKa-b selectivity is proportional to
property space parameters. In contrast, the intercept
value is always negative, allowing it to take R1b-selective
ligands into account.

4. Discussion

The first question to be addressed is why property
space descriptors correlate well with only ∆pKa-b, while
their correlation with ∆pKa-d is modest and that with
∆pKb-d nil. When examining the pharmacophoric ele-
ments of the R1a-, R1b-, and R1d-AR ligands as computed
by Bremner et al.,13 one sees that they are similar,
namely, (1) a positively charged group, (2) an aromatic
moiety, and (3) a H-bonding group. The major difference
between the three models is the relative 3D-position of
the pharmacophoric elements. In particular, the model
of the R1a-AR ligands reveals an extended geometry,
whereas the R1b-AR and R1d-AR ligands assume more
folded conformations. In other words, an R1-adreno-
ceptor ligand unable to easily adopt an extended geom-
etry will interact preferentially with the R1b- and/or
R1d-subtype, whereas an R1-AR ligand unable to easily
adopt a folded geometry will interact preferentially with
the R1a-AR.

The results of the present study are compatible with
this mechanism of selectivity. Since the property space
descriptors take structural variability into account, their
correlation with ∆pKa-b (and to a lesser but real extent
with ∆pKa-d) indicates that these selectivities are
indeed driven by differences in conformational behavior
and hence in property spaces. Similarly, the lack of
correlation with ∆pKb-d indicates that this selectivity
does not depend on conformational behavior but on
other pharmacophoric differences. Why R1a/R1d selectiv-
ity (i.e., ∆pKa-d) should correlate less well with property
space than R1a/R1b selectivity is difficult to explain.
Presumably, the computed properties (log P, dipole
moment, PSA, and SAS) do not encode fully those
recognition forces involved in binding to the R1-ARs.

The good correlations between property space descrip-
tors and ∆pKa-b may also mean that the R1a-AR can
accept both folded and extended conformers and hence
shows a good adaptability, while the R1b-AR and
R1d-AR subtypes accept only folded geometries. The
greater flexibility of R1a-AR may suggest a general
explanation for our results. Indeed, one can imagine
that a flexible ligand cannot interact with a rigid target
because loss of entropy is not made up by interaction
energy. In contrast, a flexible target can allow multiple
binding so that the ligand can preserve its flexibility
during the interaction without a dramatic decrease of
entropy. Moreover, a rigid ligand can interact with both
flexible and constrained targets because the interaction
energy can compensate a limited loss in entropy.

From a methodological viewpoint, our results suggest
that range and sensitivity are useful descriptors of
property spaces and can parametrize the capacity of a
given molecule to span broad conformational and prop-
erty spaces. In other words, range and sensitivity appear
as promising descriptors of the dynamic behavior of a
molecule. Their application to other dynamic QSARs (in
particular ADME behavior) is under investigation.

Computational Methods
Setup of the Ligand Database. The dataset of 36 R1-AR

ligands was taken from Bremner et al.13 The compounds were
set in their protonated form as recognized by the R1-ARs. The
molecules were built using the ChemNote module in the
Quanta/CHARMM package (MSI). After a preliminary energy
minimization to discard high-energy intramolecular interac-

Figure 2. Best one-variable correlation between ∆pKa-b and
range_logP (eq 5).

∆pKa-b ) 1.61((0.13){range_logP} +
0.34((0.04){sensitivity_logP} - 0.76((0.19) (6)

n ) 32; r2 ) 0.84; q2 ) 0.83; s ) 0.38
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tions, the overall geometry and the atomic charges were
optimized using MOPAC6.0 (keywords: “AM1”, “PRECISE”,
“GEO-OK”).

Conformational Analysis. The conformational behavior
of the compounds was investigated by a Monte Carlo procedure
that generated 1000 conformers by randomly rotating the
rotors. All geometries so obtained were stored and optimized
to avoid high-energy rotamers. The 1000 conformers were
clustered according to similarity to discard redundant ones;
in this analysis two geometries were considered as nonredun-
dant if they differed by more than 60° in at least one torsion
angle. For each compound, cluster analysis yielded a number
of clusters proportional to the compound’s flexibility, ranging
from five clusters (compound 19) to 34 (compound 3). Only the
lowest energy geometry was retained in each cluster.

Molecular Properties. The molecular properties consid-
ered in this study were virtual log P, dipole moment, polar
surface area (PSA), and solvent accessible surface (SAS). The
virtual log P was calculated by the molecular lipophilicity
potential (MLP) approach.24 The SAS values were calculated
by taking a solvent of radius equal to 1.4 Å. The PSA values
were calculated by subtracting the contribution of carbon
atoms and nonpolar hydrogen atoms from the SAS.25 All these
properties were calculated for each conformer of all compounds
using the VEGA package.26 The property space of each
monitored property was expressed by range and sensitivity
calculated according eq 3.

Supporting Information Available: Table S1 reports
description and average property values of the investigated
ligands. The four properties monitored during conformation
analyses are virtual log P, dipole moment, polar surface area
(PSA), and solvent-accessible surface area (SAS). Table S1 also
includes molecular flexibility indices, namely, RMSD averages,
and the number of conformational clusters produced during
the conformational analyses. Table S2 shows the property
space parameters for investigated ligands, namely the range
and sensitivity of the four properties monitored during con-
formation analyses. This material is available free of charge
via the Internet at http://pubs.acs.org.
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